10 resultados para Sunspot

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases1. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise2, 3. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9–55 G (refs 4,5,6,7). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 ± 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 -aEuro parts per thousand 15 e s(-1) pixel(-1)), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a decadal-scale late Holocene climate record based on diatoms, biogenic silica, and grain size from a 12-m sediment core (VEC02A04) obtained from Frederick Sound in the Seymour-Belize Inlet Complex of British Columbia, Canada. Sediments are characterized by graded, massive, and laminated intervals. Laminated intervals are most common between c. 2948–2708 cal. yr BP and c. 1992–1727 cal. yr BP. Increased preservation of laminated sediments and diatom assemblage changes at this time suggest that cli- mate became moderately drier and cooler relative to the preceding and succeeding intervals. Spectral and wavelet analyses are used to test for statistically significant periodicities in time series of proxies of primary production (total diatom abundance, biogenic silica) and hydrology (grain size) preserved in the Frederick Sound record. Periodicities of c. 42–53, 60–70, 82–89, 241–243, and 380 yrs are present. Results are com- pared to reconstructed sunspot number data of Solanki et al. (2004) using cross wavelet transform to evalu- ate the role of solar forcing on NE Pacific climate. Significant common power of periodicities between c. 42– 60, 70–89, 241–243, and of 380 yrs occur, suggesting that celestial forcing impacted late Holocene climate at Frederick Sound. Replication of the c. 241–243 yr periodicity in sunspot time series is most pronounced be- tween c. 2900 cal. yr BP and c. 2000 cal. yr BP, broadly correlative to the timing of maximum preservation of laminated sedimentary successions and diatom assemblage changes. High solar activity at the Suess/de Vries band may have been manifested as a prolonged westward shift and/or weakening of the Aleutian Low in the mid-late Holocene, which would have diverted fewer North Pacific storms and resulted in the relatively dry conditions reconstructed for the Seymour-Belize Inlet Complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We seek to understand the morphology of the chromosphere in sunspot umbra. We investigate if the horizontal structures observed in the spectral core of the Ca ii H line are ephemeral visuals caused by the shock dynamics of more stable structures, and examine their relationship with observables in the H-alpha line. Methods. Filtergrams in the core of the Ca ii H and H-alpha lines as observed with the Swedish 1-m Solar Telescope are employed. We utilise a technique that creates composite images and tracks the flash propagation horizontally. Results. We find 0. 15 wide horizontal structures, in all of the three target sunspots, for every flash where the seeing is moderate to good. Discrete dark structures are identified that are stable for at least two umbral flashes, as well as systems of structures that live for up to 24 min. We find cases of extremely extended structures with similar stability, with one such structure showing an extent of 5. Some of these structures have a correspondence in H-alpha, but we were unable to find a one-to-one correspondence for every occurrence. If the dark streaks are formed at the same heights as umbral flashes, there are systems of structures with strong departures from the vertical for all three analysed sunspots. Conclusions. Long-lived Ca ii H filamentary horizontal structures are a common and likely ever-present feature in the umbra of sunspots. If the magnetic field in the chromosphere of the umbra

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study properties of intensity fluctuations in NOAA Active Region 11250 observed on 13 July 2011 starting at UT 13:32. Included are data obtained in the EUV bands of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) as well as nearly simultaneous observations of the chromosphere made, at much higher spatial and temporal resolution, with the Rapid Oscillations in the Solar Atmosphere (ROSA) and Hydrogen-Alpha Rapid Dynamics camera (HARDcam) systems at the Dunn Solar Telescope. A complex structure seen in both the ROSA/HARDcam and SDO data sets comprises a system of loops extending outward from near the boundary of the leading sunspot umbra. It is visible in the ROSA Ca II K and HARDcam Hα images, as well as the SDO 304 Å, 171 Å and 193 Å channels, and it thus couples the chromosphere, transition region and corona. In the ground-based images the loop structure is 4.1 Mm long. Some 17.5 Mm, can be traced in the SDO/AIA data. The chromospheric emissions observed by ROSA and HARDcam appear to occupy the inner, and apparently cooler and lower, quarter of the loop. We compare the intensity fluctuations of two points within the structure. From alignment with SDO/HMI images we identify a point "A" near the loop structure, which sits directly above a bipolar magnetic feature in the photosphere. Point "B" is characteristic of locations within the loops that are visible in both the ROSA/HARDcam and the SDO/AIA data. The intensity traces for point A are quiet during the first part of the data string. At time ~ 19 min they suddenly begin a series of impulsive brightenings. In the 171 Å and 193 Å coronal lines the brightenings are localized impulses in time, but in the transition region line at 304 Å they are more extended in time. The intensity traces in the 304 Å line for point B shows a quasi-periodic signal that changes properties at about 19 min. The wavelet power spectra are characterized by two periodicities. A 6.7 min period extends from the beginning of the series until about 25 minutes, and another signal with period ~3 min starts at about 20 min. The 193 Å power spectrum has a characteristic period of 5 min, before the 20 min transition and a 2.5 min periodicity afterward. In the case of HARDcam Hα data a localized 4 min periodicity can be found until about 7 min, followed by a quiet regime. After ~20 min a 2.3 min periodicity appears. Interestingly a coronal loop visible in the 94 Å line that is centrally located in the AR, running from the leading umbra to the following polarity, at about time 20 min undergoes a strong brightening beginning at the same moment all along 15 Mm of its length. The fact that these different signals all experience a clear-cut change at time about 20 min suggests an underlying organizing mechanism. Given that point A has a direct connection to the photospheric magnetic bipole, we conjecture that the whole extended structure is connected in a complex manner to the underlying magnetic field. The periodicities in these features may favor the wave nature rather than upflows and interpretations will be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast and recently commissioned at the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 - 15 e/pixel/s), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, and up to 200 Hz when the CCD is windowed. ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution. We will present the current instrument set-up and parameters, observing modes, and future plans, including a new high QE camera allowing 15 Hz for Halpha. Interested parties should see https://habu.pst.qub.ac.uk/groups/arcresearch/wiki/de502/ROSA.html

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use Hα imaging spectroscopy along with Fe i 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory, to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 1024 erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 1014–1015 Mx s‑1 and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions.